Bestrophin1 Channels are Insensitive to Ethanol and Do not Mediate Tonic GABAergic Currents in Cerebellar Granule Cells

نویسندگان

  • Marvin R. Diaz
  • Aya Wadleigh
  • Benjamin A. Hughes
  • John J. Woodward
  • C. Fernando Valenzuela
چکیده

The granule cell layer of the cerebellum functions in spatio-temporal encoding of information. Granule cells (GCs) are tonically inhibited by spillover of GABA released from Golgi cells and this tonic inhibition is facilitated by acute ethanol. Recently, it was demonstrated that a specialized Ca(2+)-activated anion-channel, bestrophin1 (Best1), found on glial cells, can release GABA that contributes up to 50-75% of the tonic GABAergic current. However, it is unknown if ethanol has any actions on Best1 function. Using whole-cell electrophysiology, we found that recombinant Best1 channels expressed in HEK-293 cells were insensitive to 40 and 80 mM ethanol. We attempted to measure the Best1-mediated component of the tonic current in slices using 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). We confirmed that this agent blocks recombinant Best1 channels. Unexpectedly, we found that NPPB significantly potentiated the tonic current and the area and decay of GABA(A)-mediated spontaneous inhibitory post-synaptic currents (IPSCs) in GCs in rodent slices under two different recording conditions. To better isolate the Best1-dependent tonic current component, we blocked the Golgi cell component of the tonic current with tetrodotoxin and found that NPPB similarly and significantly potentiated the tonic current amplitude and decay time of miniature IPSCs. Two other Cl(-)-channel blockers were also tested: 4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS) showed no effect on GABAergic transmission, while niflumic acid (NFA) significantly suppressed the tonic current noise, as well as the mIPSC frequency, amplitude, and area. These data suggest that acute ethanol exposure does not modulate Best1 channels and these findings serve to challenge recent data indicating that these channels participate in the generation of tonic GABAergic currents in cerebellar GCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Na+/K+-ATPase Inhibition Partially Mimics the Ethanol-Induced Increase of the Golgi Cell-Dependent Component of the Tonic GABAergic Current in Rat Cerebellar Granule Cells

Cerebellar granule cells (CGNs) are one of many neurons that express phasic and tonic GABAergic conductances. Although it is well established that Golgi cells (GoCs) mediate phasic GABAergic currents in CGNs, their role in mediating tonic currents in CGNs (CGN-I(tonic)) is controversial. Earlier studies suggested that GoCs mediate a component of CGN-I(tonic) that is present only in preparations...

متن کامل

Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability.

Alcohol intoxication alters coordination and motor skills, and this is responsible for a significant number of traffic accident-related deaths around the world. Although the precise mechanism of action of ethanol (EtOH) is presently unknown, studies suggest that it acts, in part, by interfering with normal cerebellar functioning. An important component of cerebellar circuits is the granule cell...

متن کامل

Inhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABA receptors.

gamma-Aminobutyric acid (GABA)(B) receptors are known to enhance activation of Kir3 channels generating G-protein-dependent inward rectifier K(+)-currents (GIRK). In some neurons, GABA(B) receptors either cause a tonic GIRK activation or generate a late K(+)-dependent inhibitory postsynaptic current component. However, other neurons express Kir2 channels, which generate a constitutive inward re...

متن کامل

Ethanol sensitivity of GABAergic currents in cerebellar granule neurons is not increased by a single amino acid change (R100Q) in the alpha6 GABAA receptor subunit.

Cerebellar granule neurons (CGNs) extrasynaptically express GABA(A) receptors containing alpha(6)beta(x)delta subunits, which mediate tonic inhibitory currents. Although it has been shown that the function of these receptors is potently and directly enhanced by ethanol, this finding has not been reproducible across different laboratories. In outbred Sprague-Dawley rats, a naturally occurring ar...

متن کامل

Tonically activated GABAA receptors in hippocampal neurons are high-affinity, low-conductance sensors for extracellular GABA.

In the hippocampus, two distinct forms of GABAergic inhibition have been identified, phasic inhibitory postsynaptic currents that are the consequence of the vesicular release of GABA and a tonic conductance that is activated by low ambient concentrations of extracellular GABA. It is not known what accounts for the distinct properties of receptors that mediate the phasic and tonic inhibitory con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011